分数乘整数教案

时间:2025-06-15 12:46:19
分数乘整数教案

分数乘整数教案

作为一位优秀的人民教师,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。写教案需要注意哪些格式呢?下面是小编收集整理的分数乘整数教案,仅供参考,大家一起来看看吧。

分数乘整数教案1

课题:

分数乘整数

教学内容:

教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。

教学目标:

让学生掌握分数乘正整数的计算方法,并能准确地进行计算。

重难点、关键

分数乘整数的计算方法。

教学准备:

电脑课件

教学过程:

一、旧知铺垫

1、计算下列各题

1/5+ 2/5 3/10+1/10+7/10 3/14+3/14+3/14

过程要求:

(1) 写出计算过程。

(2) 说一说分数加法的计算方法。

2、想一想,能不能把 3/14+3/14+3/14改写成乘法算式呢?

二、探索新知

1、教学例1

(1) 出示例题

根据题意,电脑课件呈现示意图。

(2) 根据题意列出解答算式:

2/11+ 2/11+ 2/11= 2+2+2/11 = 6/11

2/11×3= 6/11

(3)探索分数乘整数的计算方法。

师:2/11×3= 6/11,说一说你是怎么想的?

① 学生在小组交流各自的想法

② 小组讨论后反馈思维的过程和结果

教师板书:2/11+ 2/11+ 2/11= 2+2+2/11 = 6/11

③总结分数乘整数的计算方法。

A、 学生口述分数乘整数的计算方法;

B、 教师整理并板书:

分数乘整数,整数与分子相乘的乘积作分子,(数学教案 )分母不变。

2、教学例2

计算:3/8×6

(1) 学生独立计算。

(2) 交流计算方法和步骤。

(3)归纳:能约分的要先约分,再计算。

三、巩固练习

1、完成课本“做一做”。

(1) 学生独立完成,然后计算过程和结果。

(2)第3题,说一说你是怎样计算的.?怎样想的?

2、课本练习二第1、2题

四、课后作业设计

计算

5/6× 7 4/13×8 3/8×3 2/15×4

3/10×5 4/9 ×3 27×2/3 16×5/32

五、列式计算

1、3个2/5是多少? 2、7/12的6倍是多少?

3、5/14扩大7倍以后是多少? 4、3/16与24的积是多少?

课后反思:本部分知识相对来说简单,学生接受的比较快,容易掌握。

分数乘整数教案2

教学目标 :

1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。

2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。

3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。

教学重点:

掌握分数乘分数的计算方法,并能熟练计算。

教学难点:

理解分数乘分数的乘法意义及算理。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )

2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )

3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)

【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】

二、合作探究(小组合作,解决问题)

出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)

(一)探究几分之一乘几分之一的算理算法

1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)

求一个数的几分之几,我们可以用乘法来计算。

2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。

3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

4. 进行交流反馈

重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固

把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。

5. 得出结果

根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?

6. 猜想计算方法

观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?

【设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】

(二)探究几分之几乘几分之几的算理算法

1. 尝试猜想

请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。

2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)

3. 验证反馈

(1)请几个采用不同验证方法的学生进行一一展示。

(预计方法:A. 画图(图形或线段);B. 转化成小数再进行计算;C. 利用分数的意义进行计算)

(2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。

4. 得出结论< ……此处隐藏10785个字……活动,班里有一位小强同学也想参加。看,他准备制作两个漂亮的风筝,这两个风筝还带有长长的尾巴呢。可就在制作这个风筝尾巴的时候,小强遇到困难了,咱们都来帮帮他,好吗?(课件出示信息)

谈话:从图中你收集到了哪些数学信息?

谈话:你能根据这组信息,提出一个数学问题吗?全班交流,

板书学生所提有价值问题:

做小鸟风筝的尾巴,一共需要多少米布条?(板书)

(2)做小鱼风筝的尾巴,一共需要多少米布条?(板书)

【设计意图】创设贴近学生生活实际的情境,以小强遇到困难了,我们都来帮帮他为契机,激发学生的学习兴趣,调动起学生自主探究解决问题的热情,为学生理解、感悟知识奠定基础。

二、算法交流,分析比较

(一)探索分数乘整数的意义。

1.独立思考,自主探索

谈话:求做小鸟风筝的尾巴,一共需要多少米布条,你会列式吗?

学生可能会出现以下算式:(根据学生的回答课件随机出示)

xxxxx

追问:你为什么这样列式?

相加的和,也可以用乘法计算?

明确:相同整数连加可以用乘法算式表示,由此可以联想到相同分数连加也可以用乘法算式表示。联想是一种很有意义的学习方法。所以分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

谈话:比较

这组乘法算式,跟我们以前学的有什么不同?

导出课题:分数乘整数(板书)

【设计意图】分数乘整数的意义是为探究分数乘整数的.计算方法服务的,在教学中,从做风筝尾巴要用多少米布条的实际问题为起点,引出分数乘整数的计算问题。把原来的乘法概念扩展到分数范围,激活了学生已有的知识经验,沟通了新旧知识的联系,初步了解了分数乘整数的意义。

(二)探索分数乘整数的计算方法。

1.独立计算感知算法。

谈话:你能尝试计算

1/2×5吗?请你在练习本上独立完成,写完之后在小组内交流一下自己的想法。

2. 算法交流,分析比较

谈话:你能交流一下你的算法吗?学生可能会出现以下方法:

(根据学生回答课件随机出示)

三、沟通优化,促进发展。

1.(1)算法的初步优化

谈话:你会计算7/18×9吗?请用自己喜欢的方法计算。

学生尝试独立计算后全班汇报交流。(根据学生回答课件随机出示)

谈话:比较一下这两种方法,你有什么感受?

小结:用相加和转化成小数的方法在计算中都存在很大的局限性,看来直接相乘的方法简便,易于计算。学生小结分数乘整数的计算方法。

(2) 探索计算中的简便方法

谈话:你能独立解决做小鸟风筝的尾巴,一共需要多少米布条这个问题吗?(学生独立算,然后小组交流)。

分数乘整数教案13

教学目标

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学重点

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学难点

引导学生总结分数乘整数的计算法则.

教学过程

一、设疑激趣

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的`和的简便运算)

(二)计算下面各题,说说怎样算?

+ + = + + =

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.

同学之间交流想法: + + = = 3× ×3=

×3这个算式表示什么?为什么可以这样计算?

教师板书: + + = ×3=

二、自主探索

(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

1.读题,说说 块是什么意思?

2.根据已有的知识经验,自己列式计算

三、交流、质疑

(一)学生汇报,并说一说你是怎样想的?

方法1: + + = = = (块)

方法2: ×3= + + = = = = (块)

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.

区别:一种方法是加法,另一种方法是乘法.

教师板书: + + = ×3

(三)为什么可以用乘法计算?

加法表示3个 相加,因为加数相同,写成乘法更简便.

(四) ×3表示什么?怎样计算?

表示3个 的和是多少?

+ + = = = = ,用分子2乘3的积做分子,分母不变.

(五)提示:为计算方便,能约分的要先约分,然后再乘.

四、归纳、概括:

(一)结合 = ×3= 和 + + = ×3= ,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算.

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变

五、巩固、发展

(一)巩固意义

1.改写算式

+ + + =( )×( )

+ + + + + + + =( )×( )

2.只列式不计算:3个 是多少? 5个 是多少?

(二)巩固法则

1.计算(说一说怎样算)

×4 ×6 ×21 ×4 ×8

思考:为什么先约分再相乘比较简便?

2.应用题

(1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

(三)对比练习

1.一条路,每天修 千米,4天修多少千米?

2.一条路,每天修全路的 ,4天修全路的几分之几?

六、课后作业

(一) 的3倍是多少? 的10倍是多少?

(二)一个正方形的边长是 米,它的周长是多少米?

(三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计

分数乘整数

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

用加法算: + + = = = (块)

用乘法算: ×3= + + = = = = (块)

答:3人一共吃了 块.

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.

《分数乘整数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式